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Overview

» Blind source separation applied to hydrogeochemistry
(Contaminant source identification)

» Reduced order modeling for contaminant transport
(Upscaling of contaminant transport properties)
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Blind Source Separation (BSS)

» BSS: an objective machine-learning method for source identification
without a model ( analysis/inversion)
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Blind Source Separation (BSS)

» Provides characterization of the physical sources causing spatial and
temporal variation of observed state variables (e.g. pressures,
concentrations, etc.)

» Avoids model errors
» Accounts for measurement errors

» |dentification of the sources (forcings) can be crucial for
conceptualization and model development

» If the sources are successfully “ ” from the observations,
decoupled physics models may then be applied to analyze the
propagation of each source independently

» Widely applicable

Blind source separation Neural Networks Conclusions
080000000 0000 [e]e]



Blind Source Separation — Matrix Factorization

» Invert for the sources S [p x r] that have produced
observation records, H [p x m/|, with noise (measurement
errors), E [p x m]:

H=SA+E
A [r xm]is “ ” matrix

p is the number of observation points (wells)
m is the number of observed components
r is the number of sources (r < m)

» The problem is ill-posed and the solutions are non-unique

» There are various methods to resolve this applying different
“regularization” terms:

maximum variability

statistical independence

non-negativity

smoothness

simplicity, etc.
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Blind source separation methods

> : Independent Component Analysis
> of the retrieved forcings
signals in S (i.e. the matrix columns are expected to be independent)
by maximizing some high-order statistics for each source signal (e.g.
kurtosis) or minimizing information entropy
» The main idea behind is that, while the probability distribution of a
linear mixture of sources in H is expected to be close to a Gaussian
(the Central Limit Theorem), the probability distribution of the original
independent sources is expected to be non-Gaussian.
> : Non-negative Matrix Factorization
> on the components of both the signal S and
mixing A matrices
» As aresult, the observed data are representing only
(suitable for many applications)
» Additivity and non-negativity requirements may lead to sparseness in
both the signal S and mixing A matrices
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NMF/%: Non-negative Matrix Factorization + k-means

v

: we have developed a novel machine learning method for BSS
coupling two machine-learning techniques:

» Non-negative Matrix Factorization (NMF)
» k-means clustering

> applies two constraints:
» non-negativity
» parsimony (simplicity)
Implemented in (Model Analysis & Decision Support)

Coded in julia

v
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LANL Chromium site (2015)
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Hydrogeochemical data [29 x6]

In the microphone analogy, this is what is recorded by the microphones.

Blind source separation
000008000

well | cr®t  ciof so2~ Nogy  ClT 3H
Pz1 | 40622 184 47846 170/ 35401  101.397
Pz2a | 83.89 088  71.155 1442 66436  121.013
Pz2b | 3501 0419 62018 424 7582 2061
Pz3 | 33888 1.1 33967  23.60  21.853  24.184
Pz-4 5.69 637 58175 1790  3.0975  11.346
Pz5 | 89.26 044 87896 498  7.8321  11.807
R-1 5.68 0.351 219 2.26 2 05
R-11 20.8 0.83 13.1 2060 5.5 4.9
R-13 3.81 0.4 3.12 3.22 249 0.2
R-15 125 8.93 6.22 7.97 3.99 29
R-28 407 1.0 55.1 491 385 211
R33#1 | 489 0.398 3.32 2.4 229 2
R33#2 | 552 0.35 2.3 1.64 2.0 1.2
R-34 4.26 0.333 2.66 276 242 1.2
R-35a 43 0.422 5.62 210 6.74 0.6
R35b | 6.98 0.579 3.48 4.84 288 13
R-36 5.29 1.55 7.35 8.69 6.1 16
R-42 835 1.24 80.9  27.04 452 201
R-43#1 | 146 1.02 169 2127 859 1.3
R-43#2 | 813 0.751 5.87 8.52 4.66 1.1
R-44#1 | 156 0.435 3.56 4.85 2.42 3.2
Rda#2 | 7.72 0.358 2.95 4.00 2.37 08
R-45#1 | 357 0.597 7.37 9.76 4.77 3.6
R-45#2 18.4 0.4 4.32 3.04 3.72 3.3
R-50#1 | 103 0.586 15 6.85 8.13 26
R-50#2 3.73 0.307 2.25 2.79 2.0 1.2
R-61#1 10.0 0.195 1.77 9.84 1.84 24
R-61#2 1 0198 22334 151  2.4858 1
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Identified groundwater types / contaminant sources [5x6]

In the microphone analogy, this is what was said by each person.
Each person’s speech corresponds to one row of this table.

Source | CrS*  ClO; SO NO; Ci- SH
ng/L pg/L mg/L mg/L mg/L pCi/L

1 0 8.8 11

2 021 056 11 0  0.021

3 0.25 2 0.094 0

4 0.24 0 4 0.069

5 0.009 0 7 0 0
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Estimated mixtures at the wells [29 x 5]

o
o
In the microphone analogy, this is
g how loud each person’s voice
- (column) is when recorded by each
o microphone (row).
Sources
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Maps of groundwater types / sources

COr®t, SO7, O~ ClOy, NOy
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Complex transport modeling
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Reduced-order transport modeling
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Neural [Networks
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Neural network + analytical solutions

» We use analytical solutions from O’Malley & Vesselinov (AWR, 2014)

» These solutions are implemented in Anasol.jl, part of MADS

» A permeability field is fed into a neural network, and the neural
network produces a small set of inputs to the analytical model

hidden layer 1 hidden layer 2 hidden laver 3

input layer
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Results
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All the sensors
concentrations
plotted as a
function of time:
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Conclusions

» NMFk applied to groundwater mixing
» Neural networks applied to groundwater transport
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Related model and decision analyses presentations at AGU 2016

> Lu, Vesselinov, Lei: Identifying Aquifer Heterogeneities using the Level Set Method ( ,
Wednesday, 8:00 - 12:00, )

» Zhang, Vesselinov: Bi-Level Decision Making for Supporting Energy and Water Nexus (
: Wednesday, 09:15 - 09:30, )

> Vesselinov, O’'Malley: Model Analysis of Complex Systems Behavior using MADS (
Wednesday, 15:06 - 15:18,

» Hansen, Vesselinov: Analysis of hydrologic time series reconstruction uncertainty due to

inverse model inadequacy using Laguerre expansion method ( : Wednesday, 16:30 -
16:45, )

» Lin, O'Malley, Vesselinov: Hydraulic Inverse Modeling with Modified Total-Variation
Regularization with Relaxed Variable-Splitting ( , Thursday, 8:00 - 12:00, )

» Pandey, Vesselinov, O’'Malley, Karra, Hansen: Data and Model Uncertainties associated with
Biogeochemical Groundwater Remediation and their impact on Decision Analysis ( ,
Thursday, 8:00 - 12:00,

» Hansen, Haslauer, Cirpka, Vesselinov: Prediction of Breakthrough Curves for Conservative and
Reactive Transport from the Structural Parameters of Highly Heterogeneous Media ( ,
Thursday, 14:25 - 14:40,

> O’Malley, Vesselinov: Groundwater Remediation using Bayesian Information-Gap Decision
Theory ( , Thursday, 17:00 - 17:15, )

» Dawson, Butler, Mattis, Westerink, Vesselinov, Estep: Parameter Estimation for Geoscience
Applications Using a Measure-Theoretic Approach ( , Thursday, 17:30 - 17:45,

)
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